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Abstract. Dempster-Shafer (DS) evidence theory is developed as an attempt to 
overcome the limitation of conventional probability theory by handling uncertain, 
imprecise and incomplete information. In this paper we present a classification 
system based on this fusion theory. The performance of this system is evaluated on 
2D and 3D X-ray data. Obtained results are very promising and encourage us to use 
this system in other applications, namely for ultrasound data classification.  

1. Introduction  

X-ray inspection is a traditional non destructive testing method used to thoroughly test 
industrial parts, such as aluminium castings in the automotive sector. Safety specifications 
and quality control task are the main focus of the inspection process. Digital image 
processing, computational intelligence and hardware progress allowed automating this task. 
While the detection of true defects is the objective, one main difficulty in X-ray inspection 
is the detection of false alarms (or false defects), especially if very small and low contrasted 
defects have to be detected. Therefore, reducing the rejection ratio of good parts without 
risking missing true defects is a serious challenge.  

The automatic detection and recognition of defects requires computerized image 
processing, image analysis, and decision process. The image processing step is critical to 
detect potential defects. During the image analysis step, features are extracted to be further 
used in classification between true defects TD and false defects FD. Our intervention is in 
the classification step, where we developed a specific approach based on data fusion theory 
to combine different sources of information together in order to improve the true 
classification rates of true defects and false alarms. To make fusion between different 
sources possible, a transition from the source space into a common space called “mass 
values” space takes place. We present a completely automatic mass value attribution 
procedure with no need for expert supervision. Performances of the classifier are quantified 
in terms of correct classification rates respectively for true defects and false alarms, and 
also using Receiver Operating Characteristics curves (ROC). The developed classification 
system, called Data Fusion Classifier (DFC), was used to classify defects from segmented 
2D radiographic images and 3D-CT volumes where it gave in both cases highly precise and 
reliable decisions.  
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In the next section, the data fusion theory is briefed, and then section three describes the 
classification algorithm. Afterwards applications and results are resumed in section four. 
Discussions and future improvement are briefed in section five. 

2. Data Fusion 

Data fusion finds its useful application in multisource contexts, when data are uncertain and 
imprecise and where there is possibility of missing data. In decision making process, the 
application of data fusion aims at building a more pertinent decision. The general concern 
is to successfully classify an element x into a class Ci of the frame of discernment , using 
information fj provided by the source j.  
 
2.1 Principe 
 
The most used models in data fusion are the probability approach, the possibility approach 
and the Evidence theory (Dempster-Shafer theory). These theories of uncertainty represent 
the imperfections of information through a confidence measure. For each class Ci of , a 
value ))x(f/Cx(M ji represents the confidence accorded to the fact that an 

element x belongs to a class Ci, using fj information provided by the source j. The data 
fusion process involves three steps illustrated in figure 1. 
 

 
Figure 1. Data fusion process steps: knowledge modeling, confidence combination and decision [1]. 

 
The aim of pre-processing is to extract the parameters of x. The selected parameters must 
be pertinent regarding the objectives. In some applications, like casting defects, expert 
choice can serve us to select the important parameters. The classes, which are provided by 
the frame of discernment, must correspond to the needs of the application and depending on 
the type of the problem these classes can be exclusive (one true and others false) or not 
(intermediate symbols OR). 

A measure )C(M i  allows us to quantify the confidence in the hypothesis that an 
element x is in class Ci of  . Confidence measures proposed by each theory fit into a 
common mathematical framework but are distinguished by their ability to model some 
nuances of language (probability, plausibility, belief, necessity, credibility). In the next step 
we combine the confidence measures of various sources for obtaining a single set of 
confidence measures. Finally, depending on the decision criteria, we choose the class which 
has the highest confidence. 
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In the next section, the Demspter-Shafer theory (also called evidence theory) is described.  
 

2.2 Evidence theory  
 
Dempster-Shafer (DS) theory, [2] and [3], is a general framework which offers more 
flexibility than probability theory. It is suitable to reason with uncertainty and allows to 
distinguish between uncertainty and imprecision. This is achieved in particular by making it 
possible to handle composite hypotheses. DS theory is also suitable for combining 
information from different sources. For a given frame of discernment   (a set of classes or 
hypotheses), the particularity of DS theory is that any source of information can give a 
piece of evidence on any subset of   which can be a simple hypothesis Hi or a union of 
simple hypotheses. Furthermore, theses hypotheses are not necessarily exclusive, e.g. 
{friend, enemy, neutral}; Hence, 2 represents the working space for the application 
being considered since it consists of all propositions for which the information sources can 
provide evidence. Information sources can distribute mass values on the subsets of the 
frame of discernment 
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The derivation of the mass distribution is the most crucial step, since it represents the 
knowledge on the actual application, as well as uncertainty incorporated in the selected 
information source [4]: 

1)A(m0   
As already mentioned, an information source assigns mass values to any hypothesis of . 
That is, if an information source cannot distinguish between two propositions Ai and Aj, it 
assigns a mass value to the set including both propositions (Ai Aj). 
 
2.3 Fusion process  
 
The combination rule of Dempster provides a mathematical relation to combine measures 
of confidence (called mass values) from different sources of information. Mass 
distributions m1, m2 from two different sources are combined with Dempster's orthogonal 
rule (conjunctive combination). The result is a new distribution, m = m1  m2, which 
carries the joint information provided by the two sources: 

K1

)Ax(m)Ax(m

)Cx)(mm()Cx(m
CAA

j2i1

21
ji









   

 





ji AA

j2i1 )Ax(m)Ax(mK  

where K is the measure of conflict between sources and it is introduced in this equation as a 
normalization factor. The larger K, the more the sources are conflicting and the less sense 
their combination. As a consequence some authors, Smets in particular [5], require the use 
of the Dempster combination rule without normalisation. Indeed, when K increases, the 
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fused mass increases although it is not related to an increase of confidence. For this reason, 
when the normalized rule is used, the conflict K must be included in the decision criteria.  

In case of M different information sources B1, B2 ...BM, the DS rule is: 
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It is possible to show, through successive combination of mass values iterations, that the 
operator of Dempster strength the certainty [6]. In other words, when the actions of two 
separate sensors lead to prefer one hypothesis, the trust granted in this hypothesis will be 
larger after merging, which is not necessarily the case with Bayes probability.  
 
3. Classification algorithm: Data Fusion Classification (DFC) 
 
The issue is to classify each detected object in one of the two classes: defect (TD) or false 
defect (FD). In the frame of Dempster-Shafer theory, this corresponds to three hypotheses: 
H1: this object is a defect  
H2: this object is a false alarm 
H3 = H1  H2 : ignorance 
 
Detected objects are described via a list of geometric and grey level based features. Each 
measured feature is considered as a source of information, and the combination of two or 
more features is expected to improve the classification performance. In order to be 
combined, features values must be translated into mass values for each hypothesis of the 
frame of discernment. 
We have developed an original method for automatic attribution of mass values to features 
measured on a detected object. The implemented method uses each feature histogram as a 
source of information. The histogram is used to divide the feature’s space into regions and 
specify for each one of these regions a corresponding mass value to the H1 hypothesis. The 
complement to one is affected to the H3 hypothesis, and no mass is assigned to H2 in order 
to avoid any conflict during combination.  
A smooth transition between regions is obtained through the use of fuzzy sets, such as 
introduced in [4]. The method can be summarized as follows:  

 
3.1 Learning on a set of known objects 

 
 Features extraction and histogram computation 
 From features to regions: computation of true defect proportion p(i) in each 

histogram interval i. A region is defined by a stable true defect proportion (via a 
criterion on the derivative of p(i)) 

 Masses attribution : m(H1) = p(region), m(H3)  = 1 - m(H1) ; m(H2) = 0 
 Different masses combination rules: normalised Demspter orthogonal rule (pair 

wise, three or all features together) and statistical rules (mean and median masses).  
 Selection of best sources (successful sources) relatively to an original external 

inspection system or satisfying an input demand on overall detection rate. 
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3.2 Validation on a set of unknown objects 

 
 Features extraction using selected sources only 
 Attribution of masses  
 Masses combination 
 Performance test  

 
A more detailed description of the method is given in [7]. 
 
3.3 Performance measures 

 
In order to measure the performance of a source, a threshold S is applied on the mass value 
m(H1) for each feature, and after each combination. The objects whose mass m(H1) is 
above the threshold are considered as true defects, and the others as false. The classification 
results is then compared to the true decision given by the expert, and the following rates are 
computed : 
 
- Correct decisions rate (PCD): 

defects falseanddefectstrueofnumber total

classifiedcorrectly  defectsfalseclassifiedcorrectly defects trueofnumber 
PCD




 
 
- True Defects classification rate (PTD): 

defectstrueofnumber total

classifiedcorrectly  defects  trueofnumber 
PTD   

- False Defects classification rate (PFD): 
 

defectsfalseofnumber total

classifiedcorrectly  defects false ofnumber 
PFD   

 
- Overall classification rate (R): 

cba

PFD  c  PTD  b  PCD  a
R




  

 
The rate R was introduced in such a way to give the user the possibility to attribute more 
importance to the correct classification of either TD or FD. Usually more importance is 
given to TD detection. Thus, the overall rate R is computed with a=c=1, and b=5. 

 
4. Applications and results 

 
We tested the proposed classification algorithm DFC on 2D radiography dataset and on 3D 
computed tomography (CT) dataset. In the first case, the DFC system is compared with the 
Intelligent System for Automated Radioscopy (ISAR), developed by EZRT Fraunhofer and 
used for radioscopic quality control in the production of castings. Information about the 
ISAR system can be found in the reference [8].  
In this paper, we resume the obtained results. For detailed explanations about each 
application, please refer to papers [9] and [10]. 

5



4.1 Castings radiography dataset 
 
This dataset is extracted from industrial radioscopic images of castings. After segmentation, 
detect objects are characterized by an array of eleven features (such as area, contrast, 
volume, etc...). Each object is classified manually into TD and FD by a radiological expert, 
his decisions are considered as the true decisions. 
The dataset is formed of 361 objects. It contains 231 true defects TD including oxides, gas 
voids and porosities and 130 false defects FD (see figure 2).  
The dataset is divided into two parts, a learning database (formed of 65 FD and 115 TD), 
and a testing dataset (formed of 65 FD and 116 TD).  
 

 
        

Figure 2. The true or false defects appear as a brighter zone in the red rectangle. On the left side appears a 
true defect and on the right side appears an artefact caused by the structure of the inspected part. 

 
First the learning process takes place on the learning dataset. Then a selection of the best 
sources which give the highest overall classification rate R. Afterwards the testing dataset is 
classified using the selected best sources. Their performance on the learning and testing 
datasets are compared to the ISAR’s performance. Results are resumed in the following 
table 1 ordered by decreasing overall classification rate R obtained on the testing dataset. 
 

 
Source 

Learning process Testing process 

R PFD PTD R PFD PTD 

Mean Mass 0.992 1 0.991 0.97 0.974 0.953 

DFC(MaxElongation & 
InOutContrast) 

0.988 0.938 1 0.955 0.982 0.841 

DFC(Depth2Thickness & 
InOutContrast) 

0.997 0.98 1 0.941 0.964 0.846 

ISAR 0.925 0.723 0.974 0.932 0.723 0.982 

 
Table 1. Achieved overall rates R performances on 2D castings radiography by classification using ISAR and 

data fusion classifiers. 
 
4.2 Castings 3D CT dataset 
 
The 3D CT dataset is for aluminium castings. It contains 442 object (or potential defects) 
classified by an expert between true and false defects (see figure 3). Only 44 objects are 
true defects and the remaining 398 objects are false defects, therefore this dataset is very 
unbalanced. Existing defects are from different types: porosities, cracks and voids. False 
defects are due to noise, CT artefacts and the segmentation of structural elements as 
potential defects. For automatic classification purpose, a total number of 30 features are 
measured on each object. These features represent the input sources of information for DFC 
system to automatically classify the entry object as true or false defect.  
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For the learning and testing processes, the complete dataset is divided into: 
- Learning dataset: 226 potential defects consisted of: 200 false alarms and 26 true defects. 
- Testing dataset: 216 potential defects consisted of: 198 false defects and 18 true defects. 

 
Figure 3. Part of a slice view extracted from a 3D CT volume: on the left side a true defect (surface defect) 
appears as a darker area and on the right side a false alarm (reconstruction artefact) appears, as a darker area 

as well. 
 

Results for DFC system are presented in table 2 ordered by decreasing R. 
 

 
Source 

Learning process Testing process 

R PFD PTD R PFD PTD 

Median Mass 0.99 0.97 1 0.97 0.89 1 

DFC(features 15 & 23) 0.88 1 0.84 0.63 0.99 0.5 

 
Table 2. Achieved overall rates R performances on castings 3D CT data by classification using data fusion 

classifiers. 
 
5. Discussion and perspectives 
 
First of all, the interest of this classification approach is that it is completely "transparent", 
i.e. it is not a black box such as neural network techniques for example. Classification 
results obtained are very good in comparison to the actual industrial system as was proved 
on 2D data (no actual system for 3D data). This is especially noticeable on the false alarms 
classification rate which is greatly improved with data fusion system. Concerning the 
combination rule, actually mean or median mass appear better that DFC combination, may 
be because all the features are used, while with Dempster Shafer rule, using all the features 
decrease the performance. A complete analysis of the Dempster rule and its behaviour with 
the number of combined sources is out of scope of this paper. It is worth noting that the 
mass attribution method (which can be compared to a confidence measure) is a very useful 
tool to translate any feature into a common space allowing their combination (either using a 
statistical rule, or the orthogonal sum of Dempster). 
Our present work is to apply a similar method to other 3D data, namely from ultrasonic 
testing for composite materials.                  
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