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Abstract. The computer simulation of radiography is applicable for different 
purposes in NDT such as for the qualification of NDT systems, the optimization of 
system parameters, feasibility analysis, model-based data interpretation, education 
and training of NDT/NDE personnel, and others. Within the framework of the 
European project PICASSO simulators will be adapted to support reliability 
assessments of NDT tasks. The radiographic simulator aRTist developed by BAM is 
well suited for this task. It combines analytical modelling of the RT inspection 
process with the CAD-orientated object description applicable to various industrial 
sectors such as power generation, aerospace, railways and others. The analytic 
model includes the description of the radiation source, the interaction of radiation 
with the material of the part, and the detection process with special focus to DIR. To 
support reliability estimations the simulation tool is completed by a tool for 
probability of detection (POD) estimation. It consists of a user interface for planning 
automatic simulation runs with varying parameters, specifically defect variations. 
Further, an automatic image analysis procedure is included to evaluate the defect 
visibility and calculate the POD therefrom.  

Introduction  

A general problem with NDT methods is the physical limitation of the applied measuring 
principle. Especially when a certain method is pushed to the limit, it constitutes a dangerous 
error to designate a part as “defect-free” when no defect has been found by the NDT 
method. Typically, flaws below some critical size are detected only with a certain 
probability <100% by a given method, and when the flaw size is further reduced, this 
probability quickly decreases such that it is highly unlikely to detect the flaw using the 
given method. Here, NDT reliability analysis comes into play which statistically estimates 
this probability of detection (POD) of a flaw given a characteristic parameter like its size or 
orientation. The method of determining the POD as a function of flaw size has been put 
forward by Alan Berens in his seminal work[1], and today it is well established in many 
industrial sectors like aeronautics, railway or power generation, requiring high standards for 
the respective NDT systems. 

Despite its widespread use, the application of the POD determination following 
Berens is still quite costly, since the user has to manufacture a series of artificial defects 
with certain properties and analyze them using the NDT method in question. With the 
availability of NDT simulation systems achieving a high level of realism, it is tempting to 
replace the expensive inspection of artificially created test samples by cheap computer 
simulations, which can generate test data for large collections of defects much easier and 
faster. While there will be no way around testing the physical NDT system at least for 
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settings with high reliability requirements, it should be possible to combine simulated and 
experimental data to get NDT performance estimates faster and with reduced costs, or for 
estimating the NDT performance and determining requirements for systems that are not yet 
physically built. This is the aim of the European PICASSO project[2]. In the framework of 
PICASSO, the existing radiographic simulator aRTist[3] has been enhanced by a software 
module, SimuPOD, which facilitates the simulation of POD trials from within aRTist. It 
provides a user friendly interface to setup, perform, and analyze series of calculations with 
a special focus on POD curve estimation. In the following section, the POD method is 
shortly reviewed. Then we describe the aRTist software package and its improvements 
since the publication of Ref[3]. Finally, SimuPOD is described. 

1. The POD(a) method 

To estimate the POD as a function of the flaw size a, a series of defects must be 
manufactured with different a and measured using the NDT system in question. In the â-vs-
a analysis proposed by Berens[1], the NDT system is modelled by a two-stage process: 
first, a physical measurement produces the signal response â that is a strictly increasing 
function of the real size a, and this signal is further disturbed by noise. Then, a decision 
takes place whether â is larger than a given threshold âdec, in which case, the NDT system 
signals the detection of a flaw. Under these circumstances the POD is given by the 
probability, that the measured â (including the noise) exceeds the threshold âdec [1] 

(1) POD(a) = P (â > âdec). 
The exact unit and meaning of â depend on the method. For example, in UT, â could mean 
the echo height of an indication, and in RT it can be the contrast. Berens postulates, that the 
functional relation of â-vs-a can often be described by a linear function on a log-log scale, 
provided that the noise floor at small values of â<âth and the saturation at large values of 
â>âsat  are removed from the data. He further proposes the use of censored linear regression 
to estimate this dependency from the measured data. For Gaussian white noise, the POD(a) 
curve is nothing but a properly scaled error function of log a, such that POD(adec)=50%, 
where adec is the flaw size corresponding to the decision threshold âdec. Since the POD 
curve determined by this method is itself a measured quantity, it is subject to statistical 
errors. Berens uses the method of Cheng&Iles[4] to infer a lower 95% confidence bound 
from the experimentally determined POD curve. The value a90/95, where the POD of a flaw 
equals 90% within the 95% confidence band, is now generally accepted as the limit of an 
NDT system.  

Using the framework described above, the following ingredients are necessary to 
estimate the POD: first, the parameters a and â must be defined for the given method. 
Second, a series of setups with trial defects must be prepared. Finally, the thresholds âdec, 
âth and âsat must be set. All these settings can be controlled in a computer simulation; 
therefore it is possible to perform the whole process in a virtual setting.  

In the next section, we give an overview of the radiographic simulation software 
package aRTist. 

2. aRTist 

The analytical RT inspection & simulation tool aRTist[3] is a software package for the 
simulation of X-ray imaging in industrial settings. It provides an interactive and user 
friendly 3D GUI to setup all parameters necessary for the simulation. Owing to the 
employed algorithm for image generation, it is also quite fast and achieves near interactive 
frame rates in typical settings. 
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The computation of an image in aRTist is a three-stage process. A first simulation 
computes the spectrum of the X-ray tube from the radiographic parameters. Alternatively, a 
measured spectrum can be loaded. The second stage casts rays from the source to every 
detector pixel and results in the dose value and the filtered spectrum for every pixel. The 
final stage converts the dose to gray values and applies noise characteristics and 
unsharpness. The computational engines for all three stages have undergone major 
revisiting in the newest version of aRTist. In the next sections, these modules are briefly 
described. 

2.1 The source model 

A quantitative model for the computation of realistic tube spectra, XRayTools[5], has 
previously been developed and is now integrated into aRTist. The model makes use of a 
built-in empirical function to estimate the electron density distribution in the target as a 
function of depth, direction and energy. Optionally, this distribution can be computed via 
Monte-Carlo simulations. The target is then subdivided into slices, and the radiation 
emission is summed over all slices. This summation takes into account Bremsstrahlung, 
primary and secondary characteristic radiation, and the attenuation of radiation emanating 
from deeper slices.  

 

 
Figure 1. Spectrum of an X-ray tube with a tungsten target, acceleration voltage 100kV, 

target angle 24° and a 1mm beryllium exit window. Additional absorbers 
between the source and the detector are also taken into account. 

 
Figure 1 displays a tube spectrum for 100kV acceleration voltage on a tungsten 

target. The black line represents a measurement with an AmpTek XR-100T-CdTe-stack 
detector, while the blue line is the result of the simulation of the whole experimental 
setting. All relevant features including the characteristic radiation are captured by the 
simulation. Note that the model has no adjustable parameters; especially the total radiation 
intensity is also predicted to good accuracy from the simulation. The deviation of the total 
photon flux in this example amounts to only 2.4%. The interested reader is referred to 
Ref[5] for further details. 
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2.2 The ray casting engine 

In the second stage of the image generation, the intensity and spectrum of the radiation at 
every detector pixel is calculated by attenuating the input spectrum along each ray from the 
source point to the corresponding pixel. The input for this algorithm is a triangulated 
surface model of the test piece in the industry standard STL format. This way it is possible 
to work with arbitrary geometry and to interface directly with CAD software. The module 
first computes thickness maps which indicate the attenuating length for every material at 
the given detector pixel. Then, the spectrum is attenuated according to the Beer-Lambert 
law and the total dose is computed, possibly respecting the spectral sensitivity of the 
applied detector and the angle of incidence (see section 2.3).  

The careful reimplementation of this stage has brought a significant performance 
boost, thanks to two techniques. First, the calculation of the attenuating lengths is 
parallelized using OpenMP, thus taking advantage of the now ubiquitous multi-core CPUs 
that are found even in standard office PCs. Second, the Beer-Lambert attenuation and the 
summation of the contributions of each energy bin is offloaded to the GPU via OpenGL 
shading language (GLSL). The resulting shader program runs much faster than the CPU 
even on typical onboard graphics processors. A benchmark scene with 2000×2000 pixels, 
48000 triangles and 116 energy bins runs in 2.2s on a stock office PC with a 2.66GHz Intel 
Core2Quad CPU using 4 cores and an Intel onboard graphics chip. This is almost 25 times 
faster than the previous version of aRTist on the same machine, which needs 54s for this 
setup. When the frame size is reduced to 1000×1000 pixels, the computation is finished 
within 0.65s, reaching interactive frame rates.  

2.3 The detector model 

The last stage of the image generation converts the incoming radiation intensity to the 
output units of the selected detector. For digital detectors (IP and DDA) this comprises the 
application of the spectral sensitivity in the second stage, the conversion from the absorbed 
dose to gray values and the application of detector noise and unsharpness.  

 
Figure 2. The spectral sensitivity of two different imaging plates and a typical 

scintillating screen for digital detector arrays as predicted by the 
detector model. 

 
The spectral sensitivity of a given detector is modelled by the assumption, that the 

contribution of a photon to the final gray value is proportional to the mean deposited energy 
of the interaction of the photon with the sensitive layer of the detector. In the case of digital 
detectors, the sensitive layer is the scintillating screen, whereas for imaging plates it is the 
phosphor layer. This mean deposited energy per photon depends on the energy of the 
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photon and on the angle of incidence and in fact constitutes an upper bound on the 
sensitivity. 

Figure 2 displays the spectral sensitivity predicted by the model for two different 
imaging plates and a typical scintillating screen as used for digital detector arrays. 
Preliminary experiments have been performed to verify this model, and they are found to 
be consistent with the predictions. A detailed comparison will be published in an upcoming 
article.  

The conversion from the absorbed energy per pixel to a gray value contains many 
unknowns like amplifier settings, analogue integrator components and digital gain settings. 
Therefore, empirically determined conversion functions are employed to map the absorbed 
energy to an ideal gray value for every pixel. Next, noise is added with a noise power that 
matches the experimentally found signal-to-noise ratio dependent on the gray value. 
Finally, the image is convolved with an unsharpness kernel to match the spatial resolution 
of the real detector.  

The output of the whole process is a simulated radiograph which closely matches 
experimental images. The consequent use of quantitative models results in realistic images 
and matching exposure times. The simulation of POD studies, detailed in the next section, 
relies on the quality of aRTist’s engine as a basis. 

3. SimuPOD 

In order to simulate a POD study, it is necessary to set up a series of similar scenes, where 
the flaw geometry varies. To relieve the burden on the user of the simulation software, a 
good interface is needed which allows to define geometry variations without specifying 
individual parameters for each image, and to launch a batch run of the simulation. This is 
where SimuPOD comes into play. SimuPOD is an extension to aRTist with a user friendly 
GUI for defining series of calculations and running automatic analysis, with a special focus 
on POD studies. In the next sections, we describe the basic principles of SimuPOD’s use 
and operation. 

3.1 Defining series of defects 

The interface of SimuPOD is built around the concept of simultaneous variation of 
parameters, which proves to be an efficient and easily understandable way to input many 
different scenarios of parameter variations. The GUI displays a set of parameters for each 
selected CAD part in the aRTist scene. These parameters refer to geometrical 
transformations of the objects in the 3D setting. CAD parts representing either test pieces or 
defects can be translated, scaled and rotated relative to their original position, and the X-ray 
source and the detector can also be translated. All these transformations happen in parallel. 
This can be thought of as a complex movement of the objects in question, thus the variation 
of the parameters for these transformations is dependent on time. The time is represented 
by the number of the current image. At each time step, the parameters of the 
transformations are computed for the current time, the objects are transformed, and images 
are generated. The exact formula which determines the movement is termed distribution 
and can be selected for every variable from a variety of presets or entered as a mathematical 
formula. Both deterministic as well as random variations are possible. With this concept, 
arbitrarily complex paths can be represented. 
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Figure 3. Variations of a cylindrical defect. a) logarithmically spaced increase in 

y-direction b) lognormally distributed size change in z-direction c) 
overlay of both variations. 

 
As an example, consider a cylindrical defect with its axis of symmetry aligned to 

the world y-axis (Figure 3a). The length of the cylinder should later on serve as the primary 
size a in the â-vs-a analysis. When the scale factor in y-direction, sy, is set to vary 
logarithmically from 0.5 to 2, the length of the cylinder changes with a geometric 
progression from half of the original length to double the original length from the first to 
the last time step. Additionally setting the scale factor in z-direction, sz, to follow a 
lognormal distribution, leads to random geometric fluctuations of the cylinder 
perpendicular to its axis (Figure 3b,c). The fluctuations model the uncertainty of the flaw 
geometry of a real trial series where a single size parameter a is not sufficient to describe 
the entire geometric variation. This idea of introducing random variations into the computer 
simulation was developed by PICASSO[2] in the framework of the Monte Carlo POD 
method. Therefore, with only a few settings, an arbitrary large number of defect geometries 
with given size distributions can be generated.  

When the simulation is started, SimuPOD computes three images for each time 
step: The radiograph including the defects, an additional radiograph without the defects, 
and the thickness map for the defects only. These image sets are needed for the automatic 
image analysis, which estimates the visibility of the defects in the images. 
 

3.2 Automatic image evaluation 

After the simulation is finished, the signal response â must be determined from the images. 
For this, SimuPOD includes a simple image analysis module which runs a model observer 
on the generated images. The model is a simplified ideal observer[6], which builds  a linear 
combination of the defect free radiograph and the pure defect image to match the 
radiograph of the defective object. Then, the statistical significance of the defect image is 
evaluated. An in-depth discussion of this model observer will be published in a follow-up 
article.  

The output of the model is a dimensionless number, which rates the visibility of the 
defect in every image. This is used as the signal response â in the POD(a) analysis. Figure 
4a displays the result of a sample run, where the defect is a cylinder with its axis aligned 
parallel to the radiation direction. 70 samples have been drawn, where the length is varied 
with a logarithmic distribution over more than two decades, and the size in one 
perpendicular direction is varied randomly following a lognormal distribution with σ=0.3. 
The main source of the scatter is the artificially introduced geometry variation 
perpendicular to the axis. A second, much weaker source of noise is the simulated noise 
level of the radiographs. 
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Figure 4. Result of the automatic image analysis of the defect variation in figure 3. a) â-vs-a plot. The blue 

and red dashed lines represent the decision threshold âdec=10 and the signal threshold âth=2.5, 
respectively. b) POD curve corresponding to the data and thresholds in a) The dashed lines mark 
the flaw size a90/95, where the 95% confidence bound crosses the 90% line. 

3.3 Interactive POD estimation 

After the determination of a and â, the analysis proposed in Ref[1] is carried out. Here, 
SimuPOD supports the user by an interactive GUI to set the thresholds âdec, âth and âsat and 
to compute the POD. The â-vs-a plot as in Figure 4a is shown on the screen, and the 
horizontal dashed lines representing the thresholds can be dragged with the mouse. The 
resulting POD (as in Figure 4b) is displayed below the â-vs-a plot and updated in real time. 
Therefore, the operator gets a direct feedback of the influence of the threshold settings. 
Additionally, a mouse click on any data point in the â-vs-a diagram opens the 
corresponding image in aRTist. Visually comparing the images side-by-side with the 
dataset is a useful tool to find reasonable decision thresholds. Eventually, the POD curve 
can be exported to ASCII format for further analysis by the user.  

Conclusion 

The radiographic simulator aRTist has been enhanced by the module SimuPOD, which 
facilitates the simulation of the classical experimental POD(a) analysis. A small number of 
user defined parameters is sufficient to configure a comprehensive series of defects for 
batch calculation. The defect visibility is automatically extracted from the simulated 
radiographs, and the resulting POD(a) is displayed. The parameters for the computation can 
be set in an interactive fashion by the user. Improvements to the source and detector model 
of aRTist’s computational engine have led to more realistic images and a performance 
boost of a factor of up to 25. In the future, more sophisticated planning strategies, image 
and statistical analysis algorithms will be evaluated. aRTist, together with SimuPOD, 
provides a prototype platform for rapidly implementing these algorithms.  
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