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Abstract. A novel approach to strongly suppress artifacts in radiography and
computed tomography caused by the effect of diffuse background signals
(“backlight”) of 2D X-ray detectors is suggested. Depending on the detector
geometry the mechanism may be different, either based on the optical scattering of
the fluorescent screen materials into optical detection devices or Compton or X-ray
fluorescence scattering by the detector components. Consequently, these erroneous
intensity portions result in locally different violations of Lambert Beer’s law in
single projections (radiographs).

When used as input data for computed tomography these violations are directly
observed via modulation of the projected mass as a function of the rotation phase
and the sample’s aspect ratio (dynamics). The magnitude of the diffuse background
signal depends on the detector area covered by the projected sample. They are more
pronounced the smaller the shaded area and the stronger the total attenuation.
Moreover, the local intensity mismatch depends on the attenuation of the sample.

We present very basic reference data measured with multiple metal foils at a
synchrotron radiation source. Beam hardening artifacts can be excluded due to the
monochromatic radiation. The proposed correction procedure assumes a constant
(non-local) scattering mechanism.

Introduction

The rigorous validity of Lambert Beer’s law of attenuation is often ignored in qualitative
radiology. The emphasis is on the mere perceptibility of the material structure, flaws etc. of
interest. The most practical radiographic applications employ polychromatic X-rays. This
hampers a quantitative estimation of beam hardening since it requires a case specific
calculation taking into account the actual combination of source, sample and detection
system and eventually hinders a comparison to tabulated reference values.

Furthermore, scattering effects (arising from refraction, diffraction and incoherent
Compton scattering) cause unwanted distortions of intensity. Instead of fundamental
corrections contemporary calibration procedures of 2D detectors focus mainly on pixel
calibration [1]. For computed tomography (CT) measurements qualitatively proper single
projections are inevitable for high reconstruction quality, i.e. the validity of Lambert-
Beer’s law must be warranted for such simple reasons as the conservation of integral
projected mass for all projection angles.

Even the best measuring conditions available (such as parallel and monochromatic
synchrotron radiation) do not warrant this invariance. Nevertheless, experimental
imponderabilities are reduced to a minimal extent (or can be determined experimentally, at
least). Doing so, the causing effect of intensity distortion can be traced back to a diffuse
detector based background signal, which obviously causes the violation of the absorption
law.
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The scope of this study is to demonstrate the experimental findings at the example
of rather simple experimental setups and to suggest a first-order approach in order to
systematically correct the calculated mismatch of absorption data.

1. Measurements

In a first example the measured phenomenon is on purpose demonstrated by means of a
simple CT measurement under well-defined experimental conditions. For a given detection
system these conditions refer to the sample (shape, homogeneity) and the radiation (band
width, divergence).

An approximately orthorhombic zirconia (ZrO;) sample (cross section app.
1.18x0.38 mm?, p=6.08 g/cm® ) has been subject to a tomography experiment at the
BAMIine [2] of the synchrotron storage ring BESSY Il operated by the Helmholtz
Zentrum Berlin (HZB) The sample has been rotated through 180 deg in steps of 0.25 deg
(10 s per single projection).

By using a double multilayer monochromator (150%(1.2 nm Si + 1.68 nm W)) the
parallel broad band synchrotron radiation is monochromatized to 60 keV (band width 2%,
Hzro2(60 keV) =17.77 ecm™ [3]). A 7 um Y3Als05,:Ce (YAG) scintillator [2] is used to
convert X-rays into visible fluorescence light. The visible light is collected by a
microscope objective (Rodenstock TV-Heliflex, f = 50mm, NA= 0.45, 3.6x) and detected
by a Princeton Instruments CCD camera VersArray: 2048B (2048 x 2048 Pixel) with
Nikon Nikkor 180/2.8 ED objective. The effective pixel size amounts to 3.72 um.

Fig.1 (top row) displays a schematic cross section of the sample and a ,,mass sino-
gram as measured“. The conversion of measured intensity to ,,mass* according to Lambert-
Beer’s law follows
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Fig. 1. Representative cross section of the ZrO, sample (simulation, top left) and the respective ,,mass
sinogram* (180 deg measurement, top right). Plotting the integral mass vs. the angle of projection (bottom
left) reveals a deviation up to 14% with respect to the required conservation of mass at 120 deg, where the
long edge points into the beam direction. This corresponds locally to the deviation of the maximum
projected mass (bottom right).



(u*D)(r) = [ u(r,2)dz = In(1,(r) /(1)) . (1)

In the following the term ,,mass* is used synonymously for the quantity #*D which is the
product of the attenuation coefficient x and the transmission chord length D(z). I(r) and
lo(r) denote the intensities of sample and flat field measurements at image position r.
The mass sinogram exhibits two peculiarities:
(1) The integral mass, i.e. integrating each line of the sinogram, is no conserved quantity
at all projection angles. It deviates up to 14% from constant (Fig. 1, bottom left).
(i1) Owing to the sample’s homogeneity of

u(r2) = py, [ pu(r,2)dz =1 D(r) @)

the maximum projected mass must be proportional to maximum transmission chord
length. Depending on the projection angle substantial differences are observed. They
reach a maximum in the range of the large chord lengths and at small cross sections (Fig.
1, bottom right).
This means that the minimal requirements to CT input data are heavily violated. As a
consequence the reconstruction suffers from strong artifacts.

2. Deviations from Lambert-Beer’s law - a basic experiment

In order to investigate the observed effect the (measured) absorption behavior of stacked
metallic foils is determined. The photon energy applied is 15 keV. The fluorescent screen
is made of 50 um CdWO, on YAG substrate.

12.5 um tin foils are chosen. The number N of foils is successively increased from
1 to 8. The attenuation coefficient of tin (Z=50, p=7.3 g/cm®) at 15 keV is 17,=34.05 mm’
1[3]. This results in an attenuation of exp(-0.425)= exp(-(z*D)o) per single foil. In order to
satisfy equ.(2) the linear dependence of («*D)(N)=N*(#*D)o is to be expected. This
examined as an integral criterion derived from the mean values of sample and flat field
measurements.

Beyond this a vertical banded background modulation of the primary beam is
observed. It originates from the double multilayer monochromator. Since sample and flat
field measurements are performed immediately one after the other no temporal changes of
the modulation can be neglected. That’s why the transmission image T(r)=lo(r) / I(r) is
examined for cancelled or remaining ,,multilayer stripes* as a local criterion.

2.1 Full detector coverage

In the first part of the experiment the tin foils were sized larger than the projection of the
active detector area. Both the local and integral criterion is fulfilled in good approximation:
stripe modulations and local detector irregularities are cancelled in the transmission image
(Fig. 2, left). This is proved numerically considering the respective variances c: o( I(r)) ~
15% clearly exceeds the estimated 3 % to be expected for a mean intensity of 950 counts,
i.e. the background modulation rules the variance. In contrast the transmission image
exhibits a variance of merely 2.4%.



The linear dependence (¢*D)(N) = N*(x*D)q is fulfilled, as well (Fig. 2, right). The
mean value (1*D)o is in very good approximation to the tabulated values 0.430(2), u=34.4
mm™ given above. The deviations of about 1% originate from fluctuations in thickness of
the single foils.
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Fig. 2. Left: fully covering the detector area (fluorescent screen) with a homogeneous absorbing material
(here: 5x12.5 pm tin) yields a conventionally calculated transmission image (after correction for dark
current) free of ,,multilayer stripes. Right: The logarithmic integral of the transmission images of gradually
stacked foils yields a linear dependence N*(*D), of the measured attenuation as a function of the number

N of tin foils.

2.2 Partial detector coverage

In the second part of the experiment the tin foils were cut into sheets which covered
approximately half the detector area.

Fig. 3 illustrates that the application of the conventional Lambert-Beer’s law yields
insufficient results judging from the local and integral criterion. The transmission image
detail (extracted from the covered area) clearly reveals remaining modulations. The plot of

3,54 full 7=0.430(2) a.u.
part. —a— 1i=0.375(35) a.u.

transmission 891

(detail)

2,5-

0 1 2 3 4 5 6 7 8 9
N

Fig. 3. Left: partially covering the detector area (fluorescent screen) with a homogeneous absorbing material

(here: 5x12.5 um tin) yields a transmission image (of the covered area) which erroneously preserves the

»multilayer modulations®. Right: The logarithmic integral of the transmission image details of gradually

stacked small foils (blue) exhibits an obvious drift from the linear course as is observed for full coverage

(grey, see Fig. 2, right).



4*D versus N from the same area is not linear. In particular the difference between the
measured (x*D) and the true (x*D)o increases as a function of the absorber thickness
(absolute and relative), i.e. the intensity is measured too large.

Fig. 4 compares cumulative cross sections of sample and flat field measurement.
While the intensity attenuated by the sample is measured too large the magnified detail of
the graphs indicates the reverse effect outside the sample’s projected area: the flat field
intensity is measured larger (here: app. 2%).
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Fig. 4. Cumulative horizontal cross section of sample (red) and flat field measurement (black): outside the
sample holds Ieas<lfiar (Ca. 2%, see inset, in contrast to findings in Fig.3 where we observed increased lIneas
(>laace ™)) inside the sample area.

3. First-order approximation: diffuse detector background - an integral approach

After reporting on the phenomenology of experimental findings we present an explanation
and a strategy to correct the obvious mismatches.

The partial levelling of local intensities (i.e. overweighting small and
underweighting large intensity) in one and the same sample measurement immediately
suggests a partial re-distribution of the locally generated fluorescent intensity to the
environment (Fig. 5). This phenomenon is named ,,diffuse detector background“ or simply
»backlight* In a first-order approximation it is assumed to be homogeneous, i.e. the re-
distribution of a fraction of local intensity on the entire fluorescent screen (measurement:
all detector pixels).
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Fig. 5. Principle scheme: The locally generated fluorescence intensity is partially distributed to the
environment, thus occurring as a “diffuse detector background” (illustrated at the example of three case
scenarios). The length of arrows qualitatively denotes individual intensities.



This fraction o is assumed tobe independent of excitation site and intensity and refers to
sample and flat field measurement in the same way. Consequently, both are corrected
additively by one and the same fraction of their individual mean values:

Icorr (r) =1 (r) - C{|_, IO,corr (r) = |0(r) - C(To (3)

The modified intensities of (4) permit the definition of a modified Lambert-Beer’s law:
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Fig. 6: Results of the suggested integral correction of diffuse detector background. Inserting an optiomized
parameter o of 10.5% yields the cancellation of the ,,multilayer modulations* (left, red frame) from the
transmission image detail as well as the re-establishment of the integral validity of the (modified) Lambert-
Beer’s law, illustrated by the red line which follows a linear course (right).

As demonstrated by Fig. 6 the appropriate selection of o in equ. (4) satisfies the
required absorption criteria for the local as well as for the integral conditions. The
»~multilayer modulations* on the uncorrected transmission image (a=0, Fig. 6, left)
disappear on the modified image («=0.105, Fig. 6, center). Moreover the application of a
constant a on the uncorrected (blue) plot of x*D versus N reveals the linear (red) plot
which coincides with the plot of the full detector coverage (black, Fig. 6, right). The only
required fit condition for finding the optimal o is the linearity requirement
min(var((*D)/N))) which provides the lowest curvature of the plot. The procedure reveals
as well the correct attenuation coefficient £=34.6 mm™ without further assumptions.

The present approach of a homogeneous background includes obviously the correct
validity of the conventional attenuation law in case of full detector coverage as the local
intensity modification by the diffuse background contribution is everywhere the same and
thus not apparent in the quotient image. Therefore equ.(4) can be applied with any a<1 and
=0 has a physical meaning.

The discussed procedure of integral background correction does not include local
variations which may be observed in detail by Fig. 4, which reveals a reduced difference of
Ifiat- Imeas further off the sample edge. In relation to the integral intensity deviations the
minor variations of the local response are considered to be negligible.
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Fig. 7: Relative deviation of the measured attenuation coefficient as a function of x#*D; “full”: full detector
coverage by sample, “part uncorr.”: partial sample coverage as measured, “part corr.” partial sample
coverage after correction

4. Summary

The effect of diffuse X-ray detector based background intensity (backlight)
- is characterized by diffusive rearrangement of recorded intensity,
- distorts the measured attenuation coefficient up to some 10% (Fig. 7),
- can be corrected numerically - at least for homogeneous samples,
- decreases with increasing detector coverage,
- increases monotonously with the sample absorption (Fig. 7).
The presented findings permit the quite general advices for all types of X-ray detectors:
- place an aperture behind the fluorescence screen (in order to reduces the detected
scattering),
- adapt the primary beam cross section to the sample cross area (reduces the image
dynamics),
- alternatively: measure the entire irradiated area (in order to enable numerical
correction),
- perform a standard measurement by a well-known reference sample (partial detector
coverage)
Although the discussed measurements have been performed by a selected detector system
the presented integral correction procedure is largely independent from the detector type.
Solely the amount of deficiencies will differ among various systems.
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