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Abstract. Analyzing damages at concrete structures due to physical, chemical, and 
mechanical exposures need the application of innovative non-destructive testing 
methods that are able to trace spatial changes of microstructures. Here, the utility of 
three different crack detection methods for the analysis of computed tomograms of 
various cementitious building materials is evaluated. Due to the lack of reference 
samples and standardized image quality evaluation procedures, the results are 
compared with manually segmented reference data sets. A specific question is how 
automatic crack detection can be used for the quantitative characterization of 
damage processes, such as crack length and volume. The crack detection methods 
have been integrated into a scientific visualization system that allows displaying the 
tomography images as well as presenting the results. 

1. Introduction  

3D micro computed tomography is a novel nondestructive method to analyze spatial 
changes of microstructures in different cementitious building materials. CT measurements 
have been performed at computed tomography laboratories at BAM with x-ray energy of 
210 kV, 1 mm Cu prefilter and a sample diameter of 70 mm, resulting in a voxel size of 40 
µm. After data preprocessing (median filter on projection data, beam hardening correction) 
standard Feldkamp reconstruction has been applied resulting in a 3D voxel data set as 
starting point for the crack detection process in ZIBAmira [1].  

Three different crack detection methods (template matching, a sheet filter based on 
Hessian eigenvalues, and percolation) have been implemented and modified according to 
their application on 3D CT data sets. The percolation algorithm works originally only for 
2D images and has been extended to 3D images. To evaluate the quality of the crack 
detection methods qualitatively and quantitatively, the results have been compared with 
manual segmented reference data sets. 
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2. Related Work 

Several techniques for crack detection have been developed recently. The most obvious 
solution is the use of standard image processing methods or combinations of it. In [2], for 
example, thresholding is applied after a beam hardening correction to detect cracks in coal 
samples. In a second step, noise and artifacts are removed from the result. The suitability 
for crack detection of the fast Haar transform, the fast Fourier transform, the Sobel filter, 
and the Canny filter are compared in [3]. For the detection of cracks in concrete bridges 
Lee et al. [4] first subtract the smoothed image to obtain uniform brightness, followed by 
removing isolated points to remove noise and morphological operations. 

To the best of our knowledge, there is no work on the use of template matching for 
crack detection. But the problem of finding cell membranes is similar. In both cases, 
surface-like structures have to be found. In [5], for example, template matching is applied 
to this problem. 

For the extraction of surface-like structures in the context of volume rendering, a so-
called sheet filter is proposed in [6]. This filter is computed from the eigenvalues of the 
Hessian matrix. In [7] this filter is also used for crack detection in 2D images, followed by 
probalistic relaxation and locally adaptive thresholding. 

An approach employing the percolation model, which is based on the phenomenon 
of liquid permeation, is proposed in [8]. However, this algorithm works only for 2D images 
and has no obvious generalization to the 3D case.  

3. Methods  

In this section, we briefly introduce the three methods for crack detection that we compare 
in this work. The first method is template matching, where the image is searched for a 
pattern modeling a crack. For details on template matching see [9]. The second method is 
the sheet filter proposed in [6] which detects sheet structures in volume data. It is computed 
from the eigenvalues of the Hessian matrix. The third method is the percolation algorithm 
described in [8], which is based on the physical model of liquid permeation. The latter 
works only for 2D images but we propose a generalization in Section 4. 

3.1 Template Matching 

The idea behind template matching is to find a certain pattern, given as an image  (the 
template), in the image . The template  is moved over the image , and at each position, 
the difference between  and (the corresponding subimage of)  is measured. A popular 
choice to measure is the correlation coefficient  
 

 
 
where ,  are the means and ,  are the standard deviations of  and , respectively, 
and  is the number of voxels in . Note that the correlation coefficient compares 

 and  rather than  and . This normalization ensures that the 
correlation coefficient does not vary with intensity changes in  or .  

To model a crack, we use a plate of zeros, which represent the crack, surrounded by 
ones, which represent the material. That is the crack is assumed to be dark in contrast to the 
surrounding material. To be more precise, the template  with dimension 

 has the value 1 for  or , and the 
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value 0 for . Thus  controls the width of the crack and  the width of 
the border. Consequently, for  and  the template is given by 

 

 
 
To ensure that cracks of arbitrary orientation are detected, we rotate  by small steps in 
both directions (azimuth, elevation) and search  for each resulting template, see Figure 1. 
 

       
 

       
 

Figure 1. The process of template matching is illustrated here in 2D. The template of a crack in different 
orientations is shown at a background pixel (upper row) and a crack pixel (lower row). 

3.2 Sheet Filter based on Hessian Eigenvalues  

A sheet filter for detecting surface-like structures in volume data, what cracks obviously 
are, is proposed in [6]. This filter is computed from the eigenvalues of the Hessian Matrix 

, which is defined by  
 

 
 

where  , , and so on. Let  be the eigenvalues of  at a 
point  and   the corresponding eigenvectors at . Now  is the direction along 
which the second derivative of  is largest. Its value is . Similarly, the second derivative 
is smallest along  with value . In the plane orthogonal to , the direction of the 
maximum second derivative has value  in direction .  
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The second derivative at points of a sheet structure has a high value in the direction 
orthogonal to the sheet and small values in the directions tangential to the sheet (under the 
assumption that sheets are darker than the surrounding region, like cracks in our datasets). 
Thus the points of a sheet satisfy the conditions 

 
 

 
i.e.  has one large eigenvalue and two small eigenvalues, see Figure 2. A sheet filter  is 
now defined by 

 

 
 

where the terms  and  represent the conditions  
and , respectively, and  represents the condition . The parameter  
controls the sharpness of the selectivity for the conditions  and . 

In order to make the filter  tunable to a certain crack width, Gaussian convolution 
is used to smooth the image data . The filter response can be adjusted to a certain crack 
width by the standard deviation  of the Gaussian function, i.e. for larger  the filter 
responds to cracks of larger width.  

 

       
 

Figure 2. A 2D slice of an image of a crack and the three eigenvalues , ,  (from left to right). 

3.3 Percolation 

The percolation algorithm described in [8] works only for 2D images. The percolation 
process, which is based on the physical model of liquid permeation, is started from each 
pixel. Depending on the shape of the percolated region, the pixel is considered as a crack 
pixel or not. Omitting some technical details, the percolation process consists basically of 
the following steps:  

 
1. The starting pixel  is added to the set of percolated pixels . 
2. The threshold  is set to the value 

 

 
 
where  is a parameter to accelerate the percolation. 

3. Each pixel  neighboring  is added to  if . 
4. Steps 2 and 3 are repeated until  reaches the boundary of a  window with 

center . 
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5. If the circularity  of  is close to 0,  is considered as a crack pixel. The 
circularity  is defined by 

 

 
 
where  is the cardinality and  the diameter of . 
 

The percolation process is illustrated in Figure 3. 
 

       
 

       
 

Figure 3. The percolation process in 2D starting from a background pixel (upper row) and a crack 
pixel (lower row). 

4. Hessian-Driven Percolation  

The percolation algorithm described in the previous section cannot be used immediately for 
the detection of cracks in 3D images. While steps 1–4 can be directly applied to 3D images, 
the circularity  computed in step 5 has no obvious generalization to 3D. Moreover the 
computation time would take very long if the percolation process was started from each 
voxel (approximately 87 hours for a small dataset of 64 MB on a 2.66 GHz quad-core Xeon 
using multiple threads). An extension of the percolation algorithm to 3D with improved 
computation time is proposed in this section. 

To overcome the problems mentioned above, we employ the sheet filter . Let  be 
the result obtained from  by choosing an appropriate threshold. The computation of the 
circularity of the percolated region  is replaced by the computation of  

 

 
 

i.e. we check if the percentage of voxels in  which is contained in  is close to 1. 
Furthermore we use  to improve the speed of the calculation. This is achieved by starting 
the percolation process only at voxels contained in . Note that if we considered the 
starting voxel of the percolation process as a crack voxel only if  is close to 1, 
then the result of the percolation algorithm would be a subset of . Thus it would be 
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impossible to correct false negatives in . To avoid this limitation, we consider the whole 
set  as crack voxels if  is close to 1. Moreover, we count how often a voxel 
is considered as crack voxel in this way. So we obtain a field of integers and can choose a 
threshold to exclude voxels which are accidently detected for only a few times. 

At first glance, it might seem unnecessarily complicated to compute the filter  to 
extend the percolation to 3D. However, the filter  can be computed quite fast. Moreover, 
as we will see in Section 5,  is not suitable as a crack filter on its own, but well suited for 
our purpose. 

 

5. Results and Discussion  

The results of template matching, the sheet filter  and the Hessian-driven Percolation are 
discussed in this section. We use a sub-volume of 1283 voxels of a concrete dataset 
containing bending and branching cracks. A manually created segmentation serves as a 
reference to compare the results qualitatively and quantitatively. Timings of the methods 
are also provided.  

The following parameters were used: For template matching, a template with crack 
width , border width  and side length  was chosen. The template was 
rotated by 5 degree steps. The sheet filter  was used with sharpness  and a standard 
deviation of  for Gaussian smoothing. The computation of  the threshold  in the 
percolation algorithm was modified; we use a fixed threshold of , where  is 
the starting voxel. With the variable threshold described in Section 3.3, we achieved no 
improvements, rather the opposite.  

Figure 4 demonstrates the qualitative differences between the methods. Template 
matching does not detect bending and branching of cracks properly. Lowering the threshold 
does not solve the problem; edges between stones and cement matrix are falsely detected in 
this case. Similar problems arise with the sheet filter  while the problem of discriminating 
cracks from edges is even bigger. Moreover cracks are detected much thicker than they 
actually are. The Hessian-driven percolation algorithm detects thick cracks reliably; 
bending and branching is no problem in contrast with template matching or the sheet filter 

. However, thin cracks might be missed, in this regard template matching is superior.  
To evaluate the quality of the methods quantitatively, we use a manually created 

reference segmentation, which we consider correct, and compute the sensitivity and the 
false discovery rate. The sensitivity is the percentage of crack voxels in the reference 
segmentation that are detected by the automatic method. Note that a voxel is considered 
detected if there is a voxel in the computed result within a radius of 2 voxels. Consequently, 
small differences concerning position and thickness of cracks are tolerated. The false 
discovery rate is the percentage of voxels in the computed result that do not belong to 
cracks according to the reference segmentation. Here, a voxel is considered not belonging 
to a crack if the distance to the reference segmentation is at least 2 voxels, i.e. small 
deviations from the reference segmentation are, again, tolerated. 

Table 1 shows the sensitivity and the false discovery rate for the different methods; 
for each method three meaningful thresholds were chosen. It is obvious that a higher 
threshold causes a lower sensitivity, but also a lower false discovery rate. Since we are 
interested in reliable result, we demand a low false discovery rate. With the sheet filter , it 
is not possible to obtain a low false discovery rate unless the sensitivity is also very poor. 
With template matching, the results are much better. The Hessian-driven percolation, 
though, gives the best results. 
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Figure 4. First column: dataset (top), manually segmented dataset (middle) and 3D visualization of Hessian-
driven percolation with threshold 1 (bottom). First column: results of template matching with thresholds 0.4, 

0.5 and 0.6. Second column: results of the sheet filter  with thresholds 0.2, 0.3 and 0.4. Third column: results 
of Hessian-driven percolation with thresholds 1, 10 and 20. 

 
 

Table 1. Comparison of computed results with reference segmentation  

Method  Threshold Sensitivity % False Discovery Rate % 
Template matching 0.4 

0.5 
0.6 

89.39 
76.75 
57.19 

24.02 
5.71 
0.93 

Sheet filter  0.2 
0.3 
0.4 

89.42 
72.23 
55.93 

43.31 
29.94 
16.97 

Hessian-driven 
percolation 

1 
10 
20 

81.14 
72.32 
69.19 

2.49 
0.46 
0.26 

 
 
 
The timings for a volume of 64 MB are given in Table 2. Template matching and the sheet 
filter  were executed on the GPU, the Hessian-driven percolation algorithm on the CPU 
using multiple threads. Note that the size of complete datasets is about 6 GB.  
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Table 2. Timings for a dataset of 64 MB on a Quad-Core Xeon X5355 with GeForce 8800 GTX 

Method  Time 
Template matching 2h 41m 
Sheet filter  8m 52s 
Hessian-driven percolation 46m 23s 

 
The long computation time of template matching explains why we combined the 
percolation algorithm with the sheet filter , although a combination with template 
matching might give better results. Moreover the limitations of the sheet filter  are not 
crucial in combination with the percolation algorithm. Bending or branching parts of a 
crack that the filter  missed are corrected: If the percolation process starts close to such a 
missed part, the percolated region  covers the bending or branching. The coincidence of  
with the result  of the sheet filter  is still high since the missed parts are small. Thus  is 
considered as a crack. The inability of  to discriminate cracks from edges is also 
compensated; if the percolation process is started at an edge, the resulting percolated region 

 consists either of the region on one or both sides of the edge, thus the coincidence with 
 is low. 

6. Conclusion 

In this work, we analyzed the suitability of template matching, a sheet filter , and a 
percolation algorithm for crack detection. We extended the latter to 3D images by 
employing the result of the sheet filter . This method, which we called Hessian-driven 
percolation, seems to be the most suitable when reliable results are the goal. The false 
discovery rate ist low; thick cracks are reliably detected, including bending and branching 
of cracks. However, thin cracks are in many cases missed by this method, whereas they are 
often found with template matching. Thus, it might be relevant to consider template 
matching when thin cracks are important in the analysis. 
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