
Comparison of Crack Detection Methods for
Analyzing Damage Processes in Concrete

with Computed Tomography

Karsten EHRIG*, Jürgen GOEBBELS*, Dietmar MEINEL*,
Olaf PAETSCH**, Steffen PROHASKA**, Valentin ZOBEL**

* BAM Federal Institute for Materials Research and Testing
(Unter den Eichen 87, 12205 Berlin, Germany,

karsten.ehrig@bam.de, juergen.goebbels@bam.de, dietmar.meinel@bam.de)
** Zuse Institute Berlin (ZIB) (Takustr. 7, 14195 Berlin, Germany,

paetsch@zib.de, prohaska@zib.de, zobel@zib.de)

Abstract. Analyzing damages at concrete structures due to physical, chemical, and
mechanical exposures need the application of innovative non-destructive testing
methods that are able to trace spatial changes of microstructures. Here, the utility of
three different crack detection methods for the analysis of computed tomograms of
various cementitious building materials is evaluated. Due to the lack of reference
samples and standardized image quality evaluation procedures, the results are
compared with manually segmented reference data sets. A specific question is how
automatic crack detection can be used for the quantitative characterization of
damage processes, such as crack length and volume. The crack detection methods
have been integrated into a scientific visualization system that allows displaying the
tomography images as well as presenting the results.

1. Introduction

3D micro computed tomography is a novel nondestructive method to analyze spatial
changes of microstructures in different cementitious building materials. CT measurements
have been performed at computed tomography laboratories at BAM with x-ray energy of
210 kV, 1 mm Cu prefilter and a sample diameter of 70 mm, resulting in a voxel size of 40
µm. After data preprocessing (median filter on projection data, beam hardening correction)
standard Feldkamp reconstruction has been applied resulting in a 3D voxel data set as
starting point for the crack detection process in ZIBAmira [1].

Three different crack detection methods (template matching, a sheet filter based on
Hessian eigenvalues, and percolation) have been implemented and modified according to
their application on 3D CT data sets. The percolation algorithm works originally only for
2D images and has been extended to 3D images. To evaluate the quality of the crack
detection methods qualitatively and quantitatively, the results have been compared with
manual segmented reference data sets.

International Symposium on
Digital Industrial Radiology and Computed Tomography - Poster 2

Licence: http://creativecommons.org/licenses/by-nd/3.0

1

2. Related Work

Several techniques for crack detection have been developed recently. The most obvious
solution is the use of standard image processing methods or combinations of it. In [2], for
example, thresholding is applied after a beam hardening correction to detect cracks in coal
samples. In a second step, noise and artifacts are removed from the result. The suitability
for crack detection of the fast Haar transform, the fast Fourier transform, the Sobel filter,
and the Canny filter are compared in [3]. For the detection of cracks in concrete bridges
Lee et al. [4] first subtract the smoothed image to obtain uniform brightness, followed by
removing isolated points to remove noise and morphological operations.

To the best of our knowledge, there is no work on the use of template matching for
crack detection. But the problem of finding cell membranes is similar. In both cases,
surface-like structures have to be found. In [5], for example, template matching is applied
to this problem.

For the extraction of surface-like structures in the context of volume rendering, a so-
called sheet filter is proposed in [6]. This filter is computed from the eigenvalues of the
Hessian matrix. In [7] this filter is also used for crack detection in 2D images, followed by
probalistic relaxation and locally adaptive thresholding.

An approach employing the percolation model, which is based on the phenomenon
of liquid permeation, is proposed in [8]. However, this algorithm works only for 2D images
and has no obvious generalization to the 3D case.

3. Methods

In this section, we briefly introduce the three methods for crack detection that we compare
in this work. The first method is template matching, where the image is searched for a
pattern modeling a crack. For details on template matching see [9]. The second method is
the sheet filter proposed in [6] which detects sheet structures in volume data. It is computed
from the eigenvalues of the Hessian matrix. The third method is the percolation algorithm
described in [8], which is based on the physical model of liquid permeation. The latter
works only for 2D images but we propose a generalization in Section 4.

3.1 Template Matching

The idea behind template matching is to find a certain pattern, given as an image (the
template), in the image . The template is moved over the image , and at each position,
the difference between and (the corresponding subimage of) is measured. A popular
choice to measure is the correlation coefficient

where , are the means and , are the standard deviations of and , respectively,
and is the number of voxels in . Note that the correlation coefficient compares

 and rather than and . This normalization ensures that the
correlation coefficient does not vary with intensity changes in or .

To model a crack, we use a plate of zeros, which represent the crack, surrounded by
ones, which represent the material. That is the crack is assumed to be dark in contrast to the
surrounding material. To be more precise, the template with dimension

 has the value 1 for or , and the

2

value 0 for . Thus controls the width of the crack and the width of
the border. Consequently, for and the template is given by

To ensure that cracks of arbitrary orientation are detected, we rotate by small steps in
both directions (azimuth, elevation) and search for each resulting template, see Figure 1.

Figure 1. The process of template matching is illustrated here in 2D. The template of a crack in different
orientations is shown at a background pixel (upper row) and a crack pixel (lower row).

3.2 Sheet Filter based on Hessian Eigenvalues

A sheet filter for detecting surface-like structures in volume data, what cracks obviously
are, is proposed in [6]. This filter is computed from the eigenvalues of the Hessian Matrix

, which is defined by

where , , and so on. Let be the eigenvalues of at a
point and the corresponding eigenvectors at . Now is the direction along
which the second derivative of is largest. Its value is . Similarly, the second derivative
is smallest along with value . In the plane orthogonal to , the direction of the
maximum second derivative has value in direction .

3

The second derivative at points of a sheet structure has a high value in the direction
orthogonal to the sheet and small values in the directions tangential to the sheet (under the
assumption that sheets are darker than the surrounding region, like cracks in our datasets).
Thus the points of a sheet satisfy the conditions

i.e. has one large eigenvalue and two small eigenvalues, see Figure 2. A sheet filter is
now defined by

where the terms and represent the conditions
and , respectively, and represents the condition . The parameter
controls the sharpness of the selectivity for the conditions and .

In order to make the filter tunable to a certain crack width, Gaussian convolution
is used to smooth the image data . The filter response can be adjusted to a certain crack
width by the standard deviation of the Gaussian function, i.e. for larger the filter
responds to cracks of larger width.

Figure 2. A 2D slice of an image of a crack and the three eigenvalues , , (from left to right).

3.3 Percolation

The percolation algorithm described in [8] works only for 2D images. The percolation
process, which is based on the physical model of liquid permeation, is started from each
pixel. Depending on the shape of the percolated region, the pixel is considered as a crack
pixel or not. Omitting some technical details, the percolation process consists basically of
the following steps:

1. The starting pixel is added to the set of percolated pixels .
2. The threshold is set to the value

where is a parameter to accelerate the percolation.

3. Each pixel neighboring is added to if .
4. Steps 2 and 3 are repeated until reaches the boundary of a window with

center .

4

5. If the circularity of is close to 0, is considered as a crack pixel. The
circularity is defined by

where is the cardinality and the diameter of .

The percolation process is illustrated in Figure 3.

Figure 3. The percolation process in 2D starting from a background pixel (upper row) and a crack
pixel (lower row).

4. Hessian-Driven Percolation

The percolation algorithm described in the previous section cannot be used immediately for
the detection of cracks in 3D images. While steps 1–4 can be directly applied to 3D images,
the circularity computed in step 5 has no obvious generalization to 3D. Moreover the
computation time would take very long if the percolation process was started from each
voxel (approximately 87 hours for a small dataset of 64 MB on a 2.66 GHz quad-core Xeon
using multiple threads). An extension of the percolation algorithm to 3D with improved
computation time is proposed in this section.

To overcome the problems mentioned above, we employ the sheet filter . Let be
the result obtained from by choosing an appropriate threshold. The computation of the
circularity of the percolated region is replaced by the computation of

i.e. we check if the percentage of voxels in which is contained in is close to 1.
Furthermore we use to improve the speed of the calculation. This is achieved by starting
the percolation process only at voxels contained in . Note that if we considered the
starting voxel of the percolation process as a crack voxel only if is close to 1,
then the result of the percolation algorithm would be a subset of . Thus it would be

5

impossible to correct false negatives in . To avoid this limitation, we consider the whole
set as crack voxels if is close to 1. Moreover, we count how often a voxel
is considered as crack voxel in this way. So we obtain a field of integers and can choose a
threshold to exclude voxels which are accidently detected for only a few times.

At first glance, it might seem unnecessarily complicated to compute the filter to
extend the percolation to 3D. However, the filter can be computed quite fast. Moreover,
as we will see in Section 5, is not suitable as a crack filter on its own, but well suited for
our purpose.

5. Results and Discussion

The results of template matching, the sheet filter and the Hessian-driven Percolation are
discussed in this section. We use a sub-volume of 1283 voxels of a concrete dataset
containing bending and branching cracks. A manually created segmentation serves as a
reference to compare the results qualitatively and quantitatively. Timings of the methods
are also provided.

The following parameters were used: For template matching, a template with crack
width , border width and side length was chosen. The template was
rotated by 5 degree steps. The sheet filter was used with sharpness and a standard
deviation of for Gaussian smoothing. The computation of the threshold in the
percolation algorithm was modified; we use a fixed threshold of , where is
the starting voxel. With the variable threshold described in Section 3.3, we achieved no
improvements, rather the opposite.

Figure 4 demonstrates the qualitative differences between the methods. Template
matching does not detect bending and branching of cracks properly. Lowering the threshold
does not solve the problem; edges between stones and cement matrix are falsely detected in
this case. Similar problems arise with the sheet filter while the problem of discriminating
cracks from edges is even bigger. Moreover cracks are detected much thicker than they
actually are. The Hessian-driven percolation algorithm detects thick cracks reliably;
bending and branching is no problem in contrast with template matching or the sheet filter

. However, thin cracks might be missed, in this regard template matching is superior.
To evaluate the quality of the methods quantitatively, we use a manually created

reference segmentation, which we consider correct, and compute the sensitivity and the
false discovery rate. The sensitivity is the percentage of crack voxels in the reference
segmentation that are detected by the automatic method. Note that a voxel is considered
detected if there is a voxel in the computed result within a radius of 2 voxels. Consequently,
small differences concerning position and thickness of cracks are tolerated. The false
discovery rate is the percentage of voxels in the computed result that do not belong to
cracks according to the reference segmentation. Here, a voxel is considered not belonging
to a crack if the distance to the reference segmentation is at least 2 voxels, i.e. small
deviations from the reference segmentation are, again, tolerated.

Table 1 shows the sensitivity and the false discovery rate for the different methods;
for each method three meaningful thresholds were chosen. It is obvious that a higher
threshold causes a lower sensitivity, but also a lower false discovery rate. Since we are
interested in reliable result, we demand a low false discovery rate. With the sheet filter , it
is not possible to obtain a low false discovery rate unless the sensitivity is also very poor.
With template matching, the results are much better. The Hessian-driven percolation,
though, gives the best results.

6

Figure 4. First column: dataset (top), manually segmented dataset (middle) and 3D visualization of Hessian-
driven percolation with threshold 1 (bottom). First column: results of template matching with thresholds 0.4,

0.5 and 0.6. Second column: results of the sheet filter with thresholds 0.2, 0.3 and 0.4. Third column: results
of Hessian-driven percolation with thresholds 1, 10 and 20.

Table 1. Comparison of computed results with reference segmentation

Method Threshold Sensitivity % False Discovery Rate %
Template matching 0.4

0.5
0.6

89.39
76.75
57.19

24.02
5.71
0.93

Sheet filter 0.2
0.3
0.4

89.42
72.23
55.93

43.31
29.94
16.97

Hessian-driven
percolation

1
10
20

81.14
72.32
69.19

2.49
0.46
0.26

The timings for a volume of 64 MB are given in Table 2. Template matching and the sheet
filter were executed on the GPU, the Hessian-driven percolation algorithm on the CPU
using multiple threads. Note that the size of complete datasets is about 6 GB.

7

Table 2. Timings for a dataset of 64 MB on a Quad-Core Xeon X5355 with GeForce 8800 GTX

Method Time
Template matching 2h 41m
Sheet filter 8m 52s
Hessian-driven percolation 46m 23s

The long computation time of template matching explains why we combined the
percolation algorithm with the sheet filter , although a combination with template
matching might give better results. Moreover the limitations of the sheet filter are not
crucial in combination with the percolation algorithm. Bending or branching parts of a
crack that the filter missed are corrected: If the percolation process starts close to such a
missed part, the percolated region covers the bending or branching. The coincidence of
with the result of the sheet filter is still high since the missed parts are small. Thus is
considered as a crack. The inability of to discriminate cracks from edges is also
compensated; if the percolation process is started at an edge, the resulting percolated region

 consists either of the region on one or both sides of the edge, thus the coincidence with
 is low.

6. Conclusion

In this work, we analyzed the suitability of template matching, a sheet filter , and a
percolation algorithm for crack detection. We extended the latter to 3D images by
employing the result of the sheet filter . This method, which we called Hessian-driven
percolation, seems to be the most suitable when reliable results are the goal. The false
discovery rate ist low; thick cracks are reliably detected, including bending and branching
of cracks. However, thin cracks are in many cases missed by this method, whereas they are
often found with template matching. Thus, it might be relevant to consider template
matching when thin cracks are important in the analysis.

References

[1] D. Stalling, M. Westerhoff, H.-C. Hege. Amira: A Highly Interactive System for Visual Data Analysis. In
C. D. Hansen, C. R. Johnson (eds.), The Visualization Handbook, Chapter 38, pp. 749-767, Elsevier, 2005.
[2] S. Mazumder, K.-H.A.A. Wolf, K. Elewaut, R. Ephraim. Application of X-ray computed tomography for
analyzing cleat spacing and cleat aperture in coal samples. International Journal of Coal Geology, 68:205-
222, 2006.
[3] I. Abdel-Qader, O. Abudayyeh, M. E. Kelly. Analysis of Edge-Detection Techniques for Crack
Identification in Bridges. Journal of Computing and Civil Engineering, 17(4):255-263, 2003.
[4] J.H. Lee, J.M. Lee, J.W. Park, Y.S. Moon. Efficient Algorithms for Automatic Detection of Cracks on a
Concrete Bridge. 23rd International Technical Conference on Circuits/Systems, Computers and
Communication, 2008.
[5] M.N. Lebbink, W.J.C. Geerts, T.P. van der Krift, M. Bouwhuis, L.O. Hertzberger, A.J. Verkleij, A.J.
Koster. Template matching as a tool for annotation of tomograms of stained biological structures. Journal of
Structural Biology, 158:327-335, 2007.
[6] Y. Sato, C.-F. Westin, A. Bhalerao, S. Nakajima, N. Shiraga, S. Tamura, R. Kikinis. Tissue Classification
Based on 3D Local Intensity Structures for Volume Rendering. IEEE Transactions on Visualization and
Computer Graphics, 6(2):160-180, 2000.
[7] Y. Fujita, Y. Hamamoto. A robust automatic crack detection method from noisy concrete surfaces.
Machine Vision and Applications, 22:245-254, 2011.
[8] T. Yamaguchi, S. Hashimoto. Fast crack detection method for large-size concrete surface images using
percolation-based image processing. Machine Vision and Applications, 21:797-809, 2010.
[9] A.M. Roseman. Particle finding in electron micrographs using a fast local correlation algorithm.
Ultramicroscopy, 94:225-236, 2003.

8

