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Abstract. New requirements to scan long objects are fostering the use of helical 
scan trajectories. An exact filtered backprojection-based method has been suggested 
by Katsevich. In this paper, we investigate the applicability of this reconstruction 
strategy in industrial CT vs. conventional filtered backprojection type 
reconstructions. Hereby, we study the accuracy and the measurement uncertainty in 
terms of length and form deviations by using a circular and helical scans of a 
calibrated cube with spherical caps. The results show that Katsevich’s helical 
algorithm can theoretically lead to more accurate measurements than circular FDK, 
but that it requires a more precise calibration during data acquisition. 

1. Introduction 

In industrial CT (ICT) metrology, accuracy and reliability of measurement are vitally 
important, but influenced by many factors. An important influence is the choice of scanning 
geometry and applied reconstruction algorithm. With a circular scanning path, the 
Feldkamp-Davis-Kress (FDK) algorithm [1] is often used. For scans based on a helical 
trajectory, Katsevich proposed an exact filtered backprojection (FBP) algorithm [2,3]. 

Both techniques require certain sets of geometric and algorithmic parameters to 
work correctly and to achieve minimal measurement errors. Despite the fact that for FDK 
the crucial parameters have been studied intensively so far, circular scans produce artifacts, 
especially at the top and bottom of the scanned object, because the amount of data acquired 
there is not sufficient for an artifact-free reconstruction [4]. 

In contrast to this, Katsevich's algorithm allows reconstructing an object without 
introducing artifacts at the axial borders of the object. Although the approach is considered 
to deliver more accurate results than standard FDK, it depends on the type of 
implementation and on the choice of parameters. Up to now, the exact helical FBP is not 
frequently used in ICT metrology and only few studies have been conducted on real data 
[5,6]. However, to use the algorithm for dimensional measurements it needs to be well 
tested with respect to reliable results. 
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Therefore, the aim of this paper is to explore measurement uncertainty of 
Katsevich's helical reconstruction in comparison to the FDK algorithm by analyzing and 
calibrating the parameters that influence the image quality of the reconstructed object. Our 
study will be performed on simulated and real data comparing circular and helical scans of 
a cube with spherical caps on three sides by applying coordinate measurement templates 
using VGStudio MAX to identify deviations in the gray values and the shape of the 
reconstructed results. By tuning parameters, the exactness of the performed measurements 
using Katsevich's algorithm on a helical scanning path will be quantified in relation to 
circular scans using FDK. As a result, the examination will approve the expected 
measurement uncertainty and outline the limitations of both techniques with respect to 
industrial CT. 

This paper is organized as follows. In Section 2 we give an overview of the 
scanning systems and the parameters used to acquire our data. Afterwards we describe both 
reconstruction algorithms and the methods used to evaluate and to compare the circular and 
helical scans. The detailed results of this evaluation are given in Section 3. Finally, in 
Section 4 we discuss the results in the context of measurement uncertainty. 

2. Material and Methods 

1.1 Data acquisition 

The object of interest used in our evaluative study is a cube made of titan alloy 
manufactured by FEINMESS GmbH & Co. KG. The cube has a size of 101010 mm³ and 
25 equidistantly spaced spherical caps on three sides with each having a radius of 
0.40.0008 mm. The lengths and the position of the caps have been calibrated by 
Deutscher Kalibrierdienst (DKD) using tactile measurements. 

Table 1. Technical specifications of the used CT scanner. 

CT scanner: v|tome|x s 225 
Manufacturer  
 
X-ray tube 
Max. tube voltage 
Max. output 

Phoenix x-ray (GE Sensing & 
Inspection Technologies) 
Microfocus 
225 kV 
320 W 

Detector 
Detector area 
Pixel number 
Pixel Pitch 
Dist. Source-Object 
Dist. Source-Detector 

Perkin Elmer 840 
204.8  204.8 mm² 
512  512 
400 µm 
68.5492 mm 
783.4191 mm 

 
The data that we acquired from this calibrated cube has been scanned by a phoenix 

x-ray v|tome|x s 225 industrial cone beam CT scanner at the TPW Prüfzentrum in Neuss. 
The technical specifications of the scanner are depicted in Table 1. The v|tome|x s 225 is a 
high-resolution system that can be configured in a macro-based fashion to run scans with 
various scanning trajectories. In our case the scanner was used to perform three scans using 
the distances (source-to-object and source-to-detector) as described in Table 1. The first 
scan in this sequence was carried out on a circular trajectory while capturing 2000 
projections over an angular range of 360 degree. After this scan the system was configured 
to acquire 2000 projections on a helical trajectory over an angular range of 720 degree (2 
turns). Finally, the scanner made another helical scan collecting 1000 projections over 360 
degree (1 turn). For last two scans we used a total helical pitch of 25.0 mm. As shown in 
Table 2 another scan has been added to the evaluation by leaving out every second 
projection of the first scan, leading to four different acquisition schemes. The scanning 
parameters for all four setups are summarized in Table 2. 



Table 2. Four different settings of parameters defining scanning and reconstruction geometries. 

Trajectory Number of Projections Angular Range [degree] Pitch [mm] 
Circular 
Helical 
Helical 
Circular 

2000 
2000 
1000 
1000 

360.0 
720.0 
360.0 
360.0 

0.0 
12.5 
25.0 
0.0 

Volume size 
Voxel size 

512  512  512 
35 µm 

 
In addition to the real data from the phoenix x-ray v|tome|x s 225, we generated 

simulated projection data to verify the correctness of our implemented reconstruction 
algorithms and to demonstrate the theoretical optimum of our evaluation. To simulate 
projections of the volume of interest we used our own implementation of a sampling based 
ray casting method, following the one presented in [7]. Although the simulation is carried 
out on a single precision GPU using NVDIA's CUDA Toolkit 3.2 the accuracy of the 
projection data has been improved by setting the sampling rate along the ray twice as high 
as the sampling rate of the volume, by using higher order integration [8] and by the 
application of the Kathan summation algorithm [9]. 

1.2 Reconstruction algorithms 

For the reconstruction of the volume datasets from the real and from the simulated 
projections within VGStudio MAX, we used a volume size of 512512512 voxels with a 
sampling distance of 35 µm. The circular scans were reconstructed using the FDK 
algorithm [1] for cone beam filtered backprojection. For the filtration part of this algorithm 
the Shepp-Logan filter was selected and from the sinogram of the real projection data a 
horizontal detector offset of -0.6063 mm was estimated. The simulated datasets of the 
circular and of the helical setups were processed without any detector offsets. 

In contrast to the circular case, the projections acquired from the helical scans were 
reconstructed using the theoretical exact filtered backprojection algorithm for helical cone 
beam proposed by Katsevich [2]. Our implementation follows the ones proposed in [10-14].  
First the derivatives of the cone beam projections at constant directions along the source 
trajectory are computed by using 2-point differences [10]. Then the projections are 
rebinned to tilted lines on the detector using bilinear interpolation, followed by a Hilbert 
transform implemented by FFT [12]. Afterwards a backward rebinning step interpolates the 
tilted projections to the original detector coordinates [11]. The final backprojection step is 
preceded by a weighting of the filtered projection data [13] according to the cone beam 
cover method proposed in [14]. Finally, each projection is backprojected using a voxel 
driven approach that can be either executed on the CPU or on the GPU using CUDA. 

Figure 1. Comparison of different choices for the horizontal detector offset during helical reconstruction from real data.
A choice of 0.0 mm (left) and of -0.6 mm as in the circular case (middle) introduced step artifacts in the reconstructed
volume. Manually tuning the parameter for the detector offset to -0.76 mm yielded the best results (right). 



Similar to the circular scans a horizontal detector offset had to be determined for the 
helical scans. Although the circular and the helical setups for the scanner were the same, 
the determined detector offsets were not equal. The horizontal offset for the helical case 
had to be manually tuned to yield reasonable reconstructions. Figure 1 show the 
reconstructed volumes of the helical scan (2000 projections) with different values for the 
parameter of the horizontal detector offset. When setting the parameter to 0.0 mm or to the 
same value as in the circular FDK reconstruction (-0.6 mm) step artifacts occurred in the 
final volume (see left and middle image of Figure 1). A manually determined value of -0.76 
mm for the horizontal detector offset yielded the best results in both helical scans. 

1.3 Evaluation methods 

For the evaluation of the acquired data and the comparison of the two reconstruction 
algorithms we started by looking at the gray value and noise properties by computing the  
signal-to-noise ratio (SNR) of the reconstructed volume from the mean of the signal μsig 
divided by the standard deviation of the background σbg. 

After this we used VGStudio MAX to determine the exactness of the reconstructions 
in terms of measurement uncertainty. By using a predefined measurement template, that 
contained all the features of the cube and its spherical caps, it was possible to apply the 
evaluation equally to all reconstructed volumes. Because of this, the following steps were 
used to evaluate each reconstructed dataset: 

1. Reconstruction of the cube using the cone beam FDK for data from circular and 
the exact spiral FBP for data from helical trajectories. 

2. With the volume inside VGStudio MAX an "Advanced Surface Determination" 
has been computed to define the surface of the cube and to use the registration 
functionalities of VGStudio MAX. 

3. Then we merged the predefined measurement template into the scene and fitted 
the volume and the template by hand, so that their boundaries roughly aligned. 

4. By copying and pasting the measurement template to the manually aligned 
volume the reference objects (spheres) of the template were fit to the spherical 
caps of the reconstructed cube. 

5. To improve the alignment of the volume with the template we registered the 
fitted reference objects of the volume with the reference objects of the imported 
measurement template. 

6. Then we deleted the fitted measurements at the volume and repeated step 4 to 
improve the fitting of the reference objects (spheres). 

7. Finally, we adjusted the resolution of the reconstructed volume using nine 
within the template predefined features which measure the actual lengths 
between some of the spheres. The nominal lengths of these features were 
computed from the DKD calibration certificate. In an iterative process the 
resolution of the volume was corrected, so that the actual lengths of the features 
fitted their nominal values. 

After all these steps the measurement template with its reference objects fitted the 
reconstructed cube and the template was used to compute the center and the surface form of 
each spherical cap. We then used the position of the spheres to compute deviations of the 
actual lengths from their nominal values. Additionally the surface form, which is defined 
by the sum of the profile peak height Zp and the profile valley depth Zv [15], quantifies the 
amount of distortion introduced by the scanning geometry and by the used reconstruction 
algorithm. 



3. Evaluation 

3.1 Noise Statistics and Grey Value 

Comparing the noise characteristics of the two reconstruction techniques revealed that in 
our case the Katsevich's FBP algorithm has a better image quality with respect to noise than 
the FDK algorithm (see Table 3). The signal-to-noise ratio for the FDK with 2000 
projections was about 16.79 with only a slightly smaller value when the number of 
projections was reduced to 1000. In the helical case the signal-to-noise ratio was 23.31 
when 2000 projections were used, where a minimal increase could be detected when the 
number of projections was reduced. 

 
Table 3. Gray value statistics (mean of the signal and standard deviation  

of the background) and signal to noise ratio of the real datasets. 

Traj. Proj. µsig σbg SNR 
Circ. 1000 0,8161 ±0,0490 16,6716 
Circ. 2000 0,8312 ±0,0495 16,7910 
Hel. 1000 0,7875 ±0,0335 23,5189 
Hel. 2000 0,8075 ±0,0346 23,3181 

 
When considering the grey values for the circular FDK reconstructions and for the 

reconstructions using Katsevich's FBP algorithm, it can be seen that the corners of the cube 
are undersampled in the real datasets, while in the simulated dataset the corners of the cube 
show no sampling artifacts (see Figure 2). Due to this drop-off at the corners in the real 
datasets of both circular and helical reconstructions the sides of the cube appear slightly 
bended. This artifact could be due to scattering effects, because in the reconstructions from 
the simulated datasets the sides are perfectly flat. 

Another artifact that occurs only in the circular FDK reconstruction is shown in 
Figure 3. Looking at the cube from the side the top and bottom of the object show so-called 
Feldkamp artifacts (see Figure 3) due to the circular scanning geometry [4]. 

Figure 3. Central axial slices of the reconstructed cube (window = 0.4, level = 0.15). The left image shows the
reconstruction from the simulated helical projections. The middle image and the right image show the cube reconstructed
from real data. The profiles below the slices show the gray value profiles along the yellow line in the slice images. 

Figure 2. Artifacts at the top of the reconstructed cube. In the FDK reconstructed object (left) cone beam artifacts occur at 
the top of the cube. When using the Katsevich's FBP algorithm no cone beam artifacts are visible (right). 



3.1 Length Deviation 

To quantify and to compare the accuracy of the reconstructions and to make statements 
about the measurement uncertainty the differences between the actual and the nominal 
distances of all spherical caps to each other are computed for the real and simulated 
datasets. Table 4 shows the resulting mean and standard deviation of the absolute 
differences for three different combinations of the spherical caps. In the left column (“All 
panes”) the distances between all 75 spherical caps have been include in the computation. 
The results show that in the circular reconstructions the mean of the absolute length 
deviation is between 9 and 10 µm, what is about one third of the actual voxel size of 35 
µm. The length deviation of 10.4 µm for the reconstruction from the simulated projections 
can be seen as a rough theoretical lower bound for the circular cases. Looking at the real 
data this bound is met by the FDK algorithm showing even lower results (9.1 and 9.0 µm). 
In contrast to this, the resulting length deviations of the reconstructions using Katsevich’s 
helical FBP are higher in the case of real data. In contrast to this, the mean length deviation 
of 5.7 µm, which is about one sixth of the voxel size, for the simulated helical projections is 
even lower than in any of the FDK reconstructions. 

 
Table 4. Differences of the actual and the nominal distances between the spherical caps to each other [µm]. 

Traj. Data Proj. 
All planes Plane 1 only Plane 1 to 2 and 3 
µ Σ µ σ µ σ 

Circ. Real 1000 9.1 ±8.4 2.5 ±1.9 11.6 ±7.6 
Circ. Real 2000 9.0 ±8.4 2.6 ±2.0 11.5 ±7.6 
Circ. Sim. 2000 10.4 ±9.3 3.5 ±4.2 17.9 ±8.1 
Hel. Real 1000 10.9 ±9.4 2.6 ±2.1 12.4 ±9.3 
Hel. Real 2000 10.6 ±8.5 5.2 ±3.3 11.4 ±8.3 
Hel. Sim. 2000 5.7 ±5.2 2.3 ±3.8 7.8 ±5.2 

 
The second column of Table 4 shows the length deviations of the 25 spherical caps 

that lie on the top plane of the cube. The results show significantly lower values (2.3 to 5.2 
µm) as the ones from the previous column, but the circular reconstructions still outperform 
the helical datasets with only one exception: the measurements on the simulated helical 
data show the lowest mean value of 2.3 µm. 

In the third column only the distances between the caps on top and the caps on the 
two other sides contribute to the computed length deviations. The lengths between the caps 
of the same plane and between caps of the two side planes have been excluded from these 
calculations. The results for all scans show slightly higher values (11.4 to 17.9 µm) as when 
considering all distances between all spherical caps (first column). In comparison to the 
first two columns, the reconstructions from the real data with 2000 projections deliver 
almost similar length deviations (11.4 µm in the helical and 11.5 µm in the circular case). 
As in two previous columns a theoretical lower bound (of 7.8 µm) is given by the 

Figure 4. Deviations between the actual and the nominal distances between the spherical caps of the cube. The length
deviations for all circular (left) and helical (right) reconstructions are plotted against their calibrated nominal lengths. For
the reconstructions from the 2000 real projections a linear trend line has been fitted to the datasets. 

‐0,08

‐0,06

‐0,04

‐0,02

0,00

0,02

0,04

0,06

0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00

Le
n
gt
h
 d
e
vi
at
io
n
: 
A
ct
u
al
‐N
o
m
in
al
 

[m
m
]

Nominal Length [mm]

Helix 1000 Helix 2000 Helix Sim. Linear (Helix 2000)

‐0,06

‐0,04

‐0,02

0,00

0,02

0,04

0,06

0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00

Le
n
gt
h
 d
e
vi
at
io
n
: 
A
ct
u
al
 ‐
N
o
m
in
al
 

[m
m
]

Nominal Length [mm]

FDK 1000 FDK 2000 FDK Sim. Linear (FDK 2000)



reconstruction from the simulated helical data and is not reached by any real dataset.  
A comparison between the length deviation and the corresponding nominal length 

shows that our circular reconstructions using the FDK algorithm with 2000 and 1000 
projections deliver almost the same results independent of the nominal length. In contrast to 
this the simulated dataset shows a positive bias in its length deviation (see left image of 
Figure 4). In the two helical reconstructions with 2000 and with 1000 projections the length 
deviations distribute quite similar like in the circular case (see right image of Figure 5), but 
the reconstruction from the simulated projections shows no bias in its length deviations and 
has a smaller range (-20 to 20 µm) as the reconstruction from the simulated circular data. 

3.2 Form Deviation 

Additionally to the length deviations, the differences between the actual and the nominal 
surface form (ZpZv) of the spherical caps have been computed and averaged over all 
planes and over every single plane (Table 5). The mean form deviations of the real datasets 
presented in Table 4 range from 10.1 µm (about one third of the voxel size) for the circular 
scan at 2000 projections up to 21.5 µm for the helical scans. Comparing the form factors of 
the circular trajectory with the ones from the helical trajectory shows that the measurements 
on the circular cases are up to a factor of 2 more accurate. The calculated surface form 
deviations for the reconstructions from the simulated projections are always lower than the 
ones from the real datasets. When comparing the single planes of the cube, no plane shows 
large deviations from the overall mean of the surface form (first column). 

 
Table 5. Differences between the actual and the nominal surface form of the spherical caps [µm]. 

Traj. Data Proj. 
All planes Plane 1 Plane 2 Plane 3 
µ σ µ σ µ Σ µ σ 

Circ. Real 1000 12.2 ±5.8 11.5 ±5.9 11.8 ±5.1 13.5 ±6.3 
Circ. Real 2000 10.6 ±5.4 10.1 ±4.9 10.6 ±4.9 11.2 ±6.4 
Circ. Sim. 2000 7.7 ±6.1 7.8 ±7.9 9.8 ±3.7 5.6 ±5.2 
Hel. Real 1000 17.3 ±7.9 14.0 ±8.0 19.7 ±6.4 18.4 ±8.1 
Hel. Real 2000 18.3 ±7.7 13.4 ±7.5 20.0 ±6.9 21.5 ±6.4 
Hel. Sim. 2000 9.7 ±6.6 12.8 ±8.3 10.4 ±3.7 6.0 ±5.2 

4. Discussion and Conclusion 

The evaluations in this paper show that on the one hand the reconstructions from the real 
circular projections delivered better result in terms measurement uncertainty (length 
deviations and form deviations) even though the helical reconstructions of the cube showed 
no cone beam artifacts at the upper and lower planes. On the other hand, looking at the 
reconstructions from the simulated datasets Katsevich's helical FBP algorithm results in the 
smallest length deviations in comparison to all other datasets. This fact suggests that there 
is a gap between the processing of real and simulated projections and that there is potential 
to optimize the helical reconstruction algorithm for real datasets. 

For example, the lower signal-to-noise ratio in the circular case can be explained by 
the loss of spatial resolution in the direction of the rotation axis [6] due the unfulfilled Tuy-
Smith sufficiency condition [16] introducing Feldkamp artifacts and thus raising the 
background noise (see Table 3). Although Katsevich's algorithm has lower detector 
utilization, where only data from inside the Tam-Danielson window is used to reconstruct 
the cube, it shows a higher signal-to-noise ratio. An increase in the detector utilization 
using a technique that incorporates redundant data from the detector into an exact helical 



reconstruction [17,18] would not only increase the signal-to-noise ratio for the helical cases 
even further, but could also influence the accuracy of measurements positively. 

Considering the length and form deviations it must be kept in mind that for the 
circular reconstructions we were able to extract the detector offset from the sinogram, 
whereas in the helical datasets we determined it manually. This in combination with the 
fact that all helical reconstructions, including Katsevich's algorithm, depend on an 
additional shift in the axial direction demonstrates that a larger number of parameters are 
influencing the reconstruction and thus providing more space for measurement errors. In 
our case, when fine tuning the parameters for the detector offset and for the helical pitch we 
got varying results for the length and form deviations. 

In summary, even if Kasevich's algorithm shows best results on simulated data, our 
study demonstrated that in the case of real data the influence and the uncertainty of 
geometric parameters make a precise calibration of the CT scanner necessary to increase 
the accuracy of helical acquisitions and reconstructions. 
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